Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Alzheimers Dement ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534027

RESUMO

INTRODUCTION: Fatty acids (FAs) are the building blocks of complex lipids and signaling compounds; the role of the lipidome fatty acid profile (LFA) in AD progression remains unclear. METHODS: The LFA of plasma and cerebrospinal fluid (CSF) samples from 289 participants (103 AD patients, 92 MCI patients, and 94 controls) was determined by GC-FID. The MCI subjects were followed up for 58 ± 12.5 months. RESULTS: In controls, CSF has a more neuroprotective LFA than plasma. In CSF, a higher content of docosahexaenoic acid was associated with a reduced risk of MCI-to-AD progression. In plasma, higher oleic acid content was associated with lower risk of AD, MCI, and MCI-to-AD progression, whereas higher levels of vaccenic acid and docosahexaenoic acid were associated with greater risk of AD and MCI, and higher rate of MCI-to-AD progression, respectively. DISCUSSION: The circulating LFA is involved in the pathogenesis and progression of AD. HIGHLIGHTS: The lipidome fatty acid profile in CSF and plasma was markedly different. Higher levels of vaccenic acid and lower levels of oleic acid in plasma were associated with greater risk of Alzheimer's disease. In plasma, higher levels of oleic acid were associated with a reduced risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in CSF were associated with a lower risk of MCI-to-AD progression. Higher levels of docosahexaenoic acid in plasma were associated with a greater rate of MCI-to-AD progression.

2.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397759

RESUMO

Obesity is a risk factor for highly prevalent age-related neurodegenerative diseases, the pathogenesis of whichinvolves mitochondrial dysfunction and protein oxidative damage. Lipoxidation, driven by high levels of peroxidizable unsaturated fatty acids and low antioxidant protection of the brain, stands out as a significant risk factor. To gain information on the relationship between obesity and brain molecular damage, in a porcine model of obesity we evaluated (1) the level of mitochondrial respiratory chain complexes, as the main source of free radical generation, by Western blot; (2) the fatty acid profile by gas chromatography; and (3) the oxidative modification of proteins by mass spectrometry. The results demonstrate a selectively higher amount of the lipoxidation-derived biomarker malondialdehyde-lysine (MDAL) (34% increase) in the frontal cortex, and positive correlations between MDAL and LDL levels and body weight. No changes were observed in brain fatty acid profile by the high-fat diet, and the increased lipid peroxidative modification was associated with increased levels of mitochondrial complex I (NDUFS3 and NDUFA9 subunits) and complex II (flavoprotein). Interestingly, introducing n3 fatty acids and a probiotic in the high-fat diet prevented the observed changes, suggesting that dietary components can modulate protein oxidative modification at the cerebral level and opening new possibilities in neurodegenerative diseases' prevention.

3.
Sleep Med ; 116: 19-26, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408422

RESUMO

INTRODUCTION: Sleep Apnea-Hypopnea Syndrome (SAHS) is a common sleep disorder influenced by factors like age, gender, and obesity. The Mediterranean Diet (MedDiet) and physical activity have shown health benefits in lung diseases, but their effects on SAHS remain underexplored. METHODS: In a cross-sectional analysis of 678 middle-aged individuals with low-to-moderate cardiovascular risk from the ILERVAS cohort, we assessed adherence to the MedDiet and physical activity levels using validated tools. Sleep parameters, SAHS severity, and excessive daytime sleepiness were evaluated through non-attended cardiorespiratory polygraphy and the Epworth Sleepiness Scale. Multinomial logistic regression models were employed to assess the relationship between MedDiet adherence, physical activity, and SAHS severity. RESULTS: The prevalence of severe, moderate, and mild SAHS was 15.5%, 23.2% and 36.1%, respectively. We found no significant associations between adherence to the MedDiet, physical activity levels, and the presence or severity of SAHS. However, we noted a significant interaction between MedDiet and physical activity with minimum SpO2 values (p = 0.049). Notably, consuming more than one serving of red meat per day was independently associated with a higher risk of moderate SAHS [OR = 2.65 (1.29-5.44), p = 0.008]. CONCLUSION: Individually, MedDiet adherence and physical activity did not show independent correlations with SAHS. However, when considered together, a minimal but significant effect on minimum SpO2 was observed. Additionally, red meat consumption was associated with a moderate risk of SAHS. Further research is necessary to comprehend the intricate connections between lifestyle factors and sleep-breathing disorders, with a focus on personalized approaches for high-risk populations.


Assuntos
Doenças Cardiovasculares , Dieta Mediterrânea , Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Pessoa de Meia-Idade , Humanos , Síndromes da Apneia do Sono/epidemiologia , Síndromes da Apneia do Sono/complicações , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/complicações , Estudos Transversais , Fatores de Risco , Apneia Obstrutiva do Sono/complicações , Fatores de Risco de Doenças Cardíacas , Exercício Físico
4.
BMC Med ; 22(1): 17, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185624

RESUMO

BACKGROUND: Slower paces of aging are related to lower risk of developing diseases and premature death. Therefore, the greatest challenge of modern societies is to ensure that the increase in lifespan is accompanied by an increase in health span. To better understand the differences in human lifespan, new insight concerning the relationship between lifespan and the age of onset of diseases, and the ability to avoid them is needed. We aimed to comprehensively study, at a population-wide level, the sex-specific disease patterns associated with human lifespan. METHODS: Observational data from the SIDIAP database of a cohort of 482,058 individuals that died in Catalonia (Spain) at ages over 50 years old between the 1st of January 2006 and the 30th of June 2022 were included. The time to the onset of the first disease in multiple organ systems, the prevalence of escapers, the percentage of life free of disease, and their relationship with lifespan were evaluated considering sex-specific traits. RESULTS: In the study cohort, 50.4% of the participants were women and the mean lifespan was 83 years. The results show novel relationships between the age of onset of disease, health span, and lifespan. The key findings include: Firstly, the onset of both single and multisystem diseases is progressively delayed as lifespan increases. Secondly, the prevalence of escapers is lower in lifespans around life expectancy. Thirdly, the number of disease-free systems decreases until individuals reach lifespans around 87-88 years old, at which point it starts to increase. Furthermore, long-lived women are less susceptible to multisystem diseases. The associations between health span and lifespan are system-dependent, and disease onset and the percentage of life spent free of disease at the time of death contribute to explaining lifespan variability. Lastly, the study highlights significant system-specific disparities between women and men. CONCLUSIONS: Health interventions focused on delaying aging and age-related diseases should be the most effective in increasing not only lifespan but also health span. The findings of this research highlight the relevance of Electronic Health Records in studying the aging process and open up new possibilities in age-related disease prevention that should assist primary care professionals in devising individualized care and treatment plans.


Assuntos
Longevidade , Resiliência Psicológica , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Retrospectivos , Envelhecimento
5.
Geroscience ; 46(1): 683-696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37999901

RESUMO

Genetic, metabolic, and clinical evidence links lipid dysregulation to an increased risk of Alzheimer's disease (AD). However, the role of lipids in the pathophysiological processes of AD and its clinical progression is unclear. We investigated the association between cerebrospinal fluid (CSF) lipidome and the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. The CSF lipidome was analyzed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 209 participants: 91 AD, 92 MCI, and 26 control participants. The MCI patients were followed up for a median of 58 (± 12.5) months to evaluate their clinical progression to AD. Forty-eight (52.2%) MCI patients progressed to AD during follow-up. We found that higher CSF levels of hexacosanoic acid and ceramide Cer(d38:4) were associated with an increased risk of amyloid beta 42 (Aß42) positivity in CSF, while levels of phosphatidylethanolamine PE(40:0) were associated with a reduced risk. Higher CSF levels of sphingomyelin SM(30:1) were positively associated with pathological levels of phosphorylated tau in CSF. Cholesteryl ester CE(11D3:1) and an unknown lipid were recognized as the most associated lipid species with MCI to AD progression. Furthermore, TG(O-52:2) was identified as the lipid most strongly associated with the rate of progression. Our results indicate the involvement of membrane and intracellular neutral lipids in the pathophysiological processes of AD and the progression from MCI to AD dementia. Therefore, CSF neutral lipids can be used as potential prognostic markers for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Proteínas tau , Espectrometria de Massas em Tandem , Progressão da Doença , Biomarcadores , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/genética , Lipídeos
6.
Gut Microbes ; 15(2): 2290318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059755

RESUMO

Iron is required for the replication and growth of almost all bacterial species and in the production of myelin and neurotransmitters. Increasing clinical studies evidence that the gut microbiota plays a critical role in iron metabolism and cognition. However, the understanding of the complex iron-microbiome-cognition crosstalk remains elusive. In a recent study in the Aging Imageomics cohort (n = 1,030), we identified a positive association of serum ferritin (SF) with executive function (EF) as inferred from the semantic verbal fluency (SVF,) the total digit span (TDS) and the phonemic verbal fluency tests (PVF). Here, we explored the potential mechanisms by analyzing the gut microbiome and plasma metabolome using shotgun metagenomics and HPLC-ESI-MS/MS, respectively. Different bacterial species belonging to the Proteobacteria phylum (Klebsiella pneumoniae, Klebsiella michiganensis, Unclassified Escherichia) were negatively associated both with SF and executive function. At the functional level, an enrichment of microbial pathways involved in phenylalanine, arginine, and proline metabolism was identified. Consistently, phenylacetylglutamine, a metabolite derived from microbial catabolism of phenylalanine, was negatively associated with SF, EF, and semantic memory. Other metabolites such as ureidobutyric acid and 19,20-DiHDPA, a DHA-derived oxylipin, were also consistently and negatively associated with SF, EF, and semantic memory, while plasma eicosapentaenoic acid was positively associated. The associations of SF with cognition could be mediated by the gut microbiome through microbial-derived metabolites.


Assuntos
Microbioma Gastrointestinal , Humanos , Espectrometria de Massas em Tandem , Cognição , Bactérias/genética , Metaboloma , Fenilalanina , Ferro , Ferritinas
7.
Antioxidants (Basel) ; 12(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136167

RESUMO

A non-dipping blood pressure (BP) pattern, which is frequently present in patients with obstructive sleep apnea (OSA), confers high cardiovascular risk. The mechanisms connecting these two conditions remain unclear. In the present study we performed a comprehensive analysis of the blood metabolipidome that aims to provide new insights into the molecular link between OSA and the dysregulation of circadian BP rhythmicity. This was an observational prospective longitudinal study involving adults with suspected OSA who were subjected to full polysomnography (PSG). Patients with an apnea-hypopnea index ≥ 5 events/h were included. Fasting plasma samples were obtained the morning after PSG. Based on the dipping ratio (DR; ratio of night/day BP values) measured via 24 h ambulatory BP monitoring, two groups were established: dippers (DR ≤ 0.9) and non-dippers (DR > 0.9). Treatment recommendations for OSA followed the clinical guidelines. Untargeted metabolomic and lipidomic analyses were performed in plasma samples via liquid chromatography-tandem mass spectrometry. Non-dipper patients represented 53.7% of the cohort (88/164 patients). A set of 31 metabolic species and 13 lipidic species were differentially detected between OSA patients who present a physiologic nocturnal BP decrease and those with abnormal BP dipping. Among the 44 differentially abundant plasma compounds, 25 were putatively identified, notably glycerophospholipids, glycolipids, sterols, and fatty acid derivates. Multivariate analysis defined a specific metabotype of non-dipping BP, which showed a significant dose-response relationship with PSG parameters of OSA severity, and with BP dipping changes after 6 months of OSA treatment with continuous positive airway pressure (CPAP). Bioinformatic analyses revealed that the identified metabolipidomic profile was found to be implicated in multiple systemic biological pathways, with potential physiopathologic implications for the circadian control of BP among individuals with OSA.

9.
Free Radic Biol Med ; 208: 728-747, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748717

RESUMO

One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.


Assuntos
Longevidade , Mamíferos , Ratos , Humanos , Animais , Longevidade/genética , Evolução Biológica , Transdução de Sinais , Especificidade da Espécie
10.
Atherosclerosis ; 380: 117191, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586219

RESUMO

BACKGROUND AND AIMS: Current research on the association between dietary patterns and subclinical atherosclerotic disease (SAD) is still limited, and published results are inconsistent and often consist of small population sizes. We aimed to evaluate the association between the Mediterranean diet (MDiet) and SAD in a large cohort of Mediterranean individuals. METHODS: This was a cross-sectional study that included 8116 subjects from the ILERVAS cohort. The presence of atherosclerotic plaques (AP) was assessed by ultrasound examination. Adherence to the MDiet was assessed using the 14-item Mediterranean Diet Adherence Score (MEDAS). Inclusion criteria were subjects with at least one cardiovascular risk factor. Exclusion criteria were a clinical history of diabetes, chronic kidney disease, or a prior cardiovascular event. Bivariable and multivariable models were performed. RESULTS: Compared with subjects without SAD, participants with SAD were older and had a higher frequency of smoking habit, hypertension, dyslipidemia, HbA1c and waist circumference. The adjusted multivariable analysis showed that a higher MEDAS was associated with a lower risk of AP (incidence rate ratios [IRR] 0.97, 95% CI [0.96-0.98]; p<0.001). Furthermore, moderate or high adherence to the MDiet was associated with a lower number of AP compared with a low MDiet adherence (IRR 0.90, 95% CI [0.87-0.94]; p<0.001). In both models, female sex was associated with a lower risk of AP. CONCLUSIONS: Our findings point to a potentially protective role of MDiet for SAD in a Mediterranean population with low-to-moderate cardiovascular risk. Further research is needed to establish a causal relationship between both variables.

11.
Alzheimers Res Ther ; 15(1): 134, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550750

RESUMO

BACKGROUND: Obstructive sleep apnoea (OSA) has a high prevalence in patients with Alzheimer's disease (AD). Both conditions have been shown to be associated with lipid dysregulation. However, the relationship between OSA severity and alterations in lipid metabolism in the brains of patients with AD has yet to be fully elucidated. In this context, we examined the cerebrospinal fluid (CSF) lipidome of patients with suspected OSA to identify potential diagnostic biomarkers and to provide insights into the pathophysiological mechanisms underlying the effect of OSA on AD. METHODS: The study included 91 consecutive AD patients who underwent overnight polysomnography (PSG) to diagnose severe OSA (apnoea-hypopnea index ≥ 30/h). The next morning, CSF samples were collected and analysed by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform. RESULTS: The CSF levels of 11 lipid species were significantly different between AD patients with (N = 38) and without (N = 58) severe OSA. Five lipids (including oxidized triglyceride OxTG(57:2) and four unknown lipids) were significantly correlated with specific PSG measures of OSA severity related to sleep fragmentation and hypoxemia. Our analyses revealed a 4-lipid signature (including oxidized ceramide OxCer(40:6) and three unknown lipids) that provided an accuracy of 0.80 (95% CI: 0.71-0.89) in the detection of severe OSA. These lipids increased the discriminative power of the STOP-Bang questionnaire in terms of the area under the curve (AUC) from 0.61 (0.50-0.74) to 0.85 (0.71-0.93). CONCLUSIONS: Our results reveal a CSF lipidomic fingerprint that allows the identification of AD patients with severe OSA. Our findings suggest that an increase in central nervous system lipoxidation may be the principal mechanism underlying the association between OSA and AD.


Assuntos
Doença de Alzheimer , Apneia Obstrutiva do Sono , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Lipidômica , Espectrometria de Massas em Tandem , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/complicações , Lipídeos , Inquéritos e Questionários
12.
Nutrients ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447198

RESUMO

Celiac disease (CD) is included in the group of complex or multifactorial diseases, i.e., those caused by the interaction of genetic and environmental factors. Despite a growing understanding of the pathophysiological mechanisms of the disease, diagnosis is still often delayed and there are no effective biomarkers for early diagnosis. The only current treatment, a gluten-free diet (GFD), can alleviate symptoms and restore intestinal villi, but its cellular effects remain poorly understood. To gain a comprehensive understanding of CD's progression, it is crucial to advance knowledge across various scientific disciplines and explore what transpires after disease onset. Metabolomics studies hold particular significance in unravelling the complexities of multifactorial and multisystemic disorders, where environmental factors play a significant role in disease manifestation and progression. By analyzing metabolites, we can gain insights into the reasons behind CD's occurrence, as well as better comprehend the impact of treatment initiation on patients. In this review, we present a collection of articles that showcase the latest breakthroughs in the field of metabolomics in pediatric CD, with the aim of trying to identify CD biomarkers for both early diagnosis and treatment monitoring. These advancements shed light on the potential of metabolomic analysis in enhancing our understanding of the disease and improving diagnostic and therapeutic strategies. More studies need to be designed to cover metabolic profiles in subjects at risk of developing the disease, as well as those analyzing biomarkers for follow-up treatment with a GFD.


Assuntos
Doença Celíaca , Humanos , Criança , Dieta Livre de Glúten , Mucosa Intestinal , Metabolômica , Biomarcadores , Glutens
13.
J Neurochem ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37401737

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord. Glial cells, including astrocytes and microglia, have been shown to contribute to neurodegeneration in ALS, and metabolic dysfunction plays an important role in the progression of the disease. Glycogen is a soluble polymer of glucose found at low levels in the central nervous system that plays an important role in memory formation, synaptic plasticity, and the prevention of seizures. However, its accumulation in astrocytes and/or neurons is associated with pathological conditions and aging. Importantly, glycogen accumulation has been reported in the spinal cord of human ALS patients and mouse models. In the present work, using the SOD1G93A mouse model of ALS, we show that glycogen accumulates in the spinal cord and brainstem during symptomatic and end stages of the disease and that the accumulated glycogen is associated with reactive astrocytes. To study the contribution of glycogen to ALS progression, we generated SOD1G93A mice with reduced glycogen synthesis (SOD1G93A GShet mice). SOD1G93A GShet mice had a significantly longer life span than SOD1G93A mice and showed lower levels of the astrocytic pro-inflammatory cytokine Cxcl10, suggesting that the accumulation of glycogen is associated with an inflammatory response. Supporting this, inducing an increase in glycogen synthesis reduced life span in SOD1G93A mice. Altogether, these results suggest that glycogen in reactive astrocytes contributes to neurotoxicity and disease progression in ALS.

14.
Atherosclerosis ; 375: 75-83, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37276714

RESUMO

BACKGROUND AND AIMS: Sex-specific impact of cumulative tobacco consumption (CTC) on atheromatosis extension and total plaque area remains unknown. We aimed to determine the impact of CTC in atheromatosis localization and burden. METHODS: We performed a cross-sectional analysis in 8330 asymptomatic middle-aged individuals. 12-territory vascular ultrasounds in carotid and femoral arteries were performed to detect atheromatous plaque presence and to measure total plaque area. Adjusted regressions and conditional predictions by smoking habit or CTC (stratified in terciles as low (≤13.53), medium (13.54-29.3), and high (>29.3 packs-year)) were calculated. Severe atheromatosis (SA, ≥3 territories with atheroma plaque) was predicted with the Systematic COronary Risk Evaluation 2 (SCORE2) model. The improvement of SA prediction after adding CTC was evaluated. RESULTS: CTC was associated with an increased risk of atheromatosis, stronger in femoral than in carotid artery, but similar in both sexes. A dose-dependent effect of CTC on the number of territories with atheroma plaque and total plaque area was observed. Addition of CTC to the SCORE2 showed a higher sensitivity, accuracy, and negative predictive value in males, and a higher specificity and positive predictive value in females. In both sexes, the new SCORE2-CTC model showed a significant increase in AUC (males: 0.033, females: 0.038), and in the integrated discrimination index (males: 0.072; females: 0.058, p < 0.001). Age and CTC were the most important clinical predictors of SA in both sexes. CONCLUSIONS: CTC shows a dose-dependent association with atheromatosis burden, impacts more strongly in femoral arteries, and improves SA prediction.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Placa Aterosclerótica , Masculino , Pessoa de Meia-Idade , Feminino , Humanos , Placa Aterosclerótica/complicações , Estudos Transversais , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Aterosclerose/etiologia , Uso de Tabaco , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/complicações
15.
Redox Biol ; 64: 102772, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339560

RESUMO

BACKGROUND: Oxidative stress is considered to play an important role in the pathogenesis of Alzheimer's disease (AD). It has been observed that oxidative damage to specific protein targets affecting particular functional networks is one of the mechanisms by which oxidative stress contributes to neuronal failure and consequently loss of cognition and AD progression. Studies are lacking in which oxidative damage is measured at both systemic and central fluid levels and in the same cohort of patients. We aimed to determine the levels of both plasma and cerebrospinal fluid (CSF) nonenzymatic protein damage in patients in the continuum of AD and to evaluate the relation of this damage with clinical progression from mild cognitive impairment (MCI) to AD. METHODS: Different markers of nonenzymatic post-translational protein modification, mostly from oxidative processes, were detected and quantified in plasma and CSF by isotope dilution gas chromatography‒mass spectrometry using selected ion monitoring (SIM-GC/MS) for 289 subjects: 103 AD, 92 MCI, and 94 control subjects. Characteristics of the study population such as age, sex, Mini-mental state examination, CSF AD biomarkers, and APOE ϵ4, were also considered. RESULTS: Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). After controlling for age, sex, and APOE ϵ4 allele, plasma and CSF concentrations of protein damage markers were not associated with either diagnosis of AD or MCI. The CSF levels of nonenzymatic protein damage markers were associated with none of the CSF AD biomarkers. In addition, neither in CSF nor in plasma were the levels of protein damage associated with the MCI to AD progression. CONCLUSION: The lack of association between both CSF and plasma concentrations of nonenzymatic protein damage markers and AD diagnosis and progression suggests that oxidative damage in AD is a pathogenic mechanism specifically expressed at the cell-tissue level, not in extracellular fluids.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides , Apolipoproteína E4 , Proteínas tau , Biomarcadores , Progressão da Doença , Fragmentos de Peptídeos
16.
Aging Dis ; 14(5): 1887-1916, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196109

RESUMO

Non-targeted LC-MS/MS-based lipidomic analysis was conducted in post-mortem human grey matter frontal cortex area 8 (GM) and white matter of the frontal lobe centrum semi-ovale (WM) to identify lipidome fingerprints in middle-aged individuals with no neurofibrillary tangles and senile plaques, and cases at progressive stages of sporadic Alzheimer's disease (sAD). Complementary data were obtained using RT-qPCR and immunohistochemistry. The results showed that WM presents an adaptive lipid phenotype resistant to lipid peroxidation, characterized by a lower fatty acid unsaturation, peroxidizability index, and higher ether lipid content than the GM. Changes in the lipidomic profile are more marked in the WM than in GM in AD with disease progression. Four functional categories are associated with the different lipid classes affected in sAD: membrane structural composition, bioenergetics, antioxidant protection, and bioactive lipids, with deleterious consequences affecting both neurons and glial cells favoring disease progression.

17.
Aging Dis ; 14(5): 1728-1738, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196122

RESUMO

Aberrant lipid metabolism has been strongly linked to Alzheimer's disease (AD) pathogenesis. However, the role of lipids in the pathophysiological processes of AD and their clinical progression is unclear. We hypothesized that plasma lipids are associated with the pathological hallmarks of AD, progression from mild cognitive impairment (MCI) to AD, and the rate of cognitive decline in MCI patients. To evaluate our hypotheses, we analysed the plasma lipidome profile by liquid chromatography coupled to mass spectrometry in an LC-ESI-QTOF-MS/MS platform for 213 subjects recruited consecutively: 104 AD, 89 MCI, and 20 control subjects. Forty-seven (52.8%) MCI patients progressed to AD during follow-up (58 ± 12.5 months). We found that higher plasma levels of sphingomyelin SM(36:0) and diglyceride DG(44:3) were associated with an increased risk of amyloid beta 42 (Aß42) positivity in CSF, while levels of SM(40:1) were associated with a reduced risk. Higher plasma levels of ether-linked triglyceride TG(O-60:10) were negatively associated with pathological levels of phosphorylated tau in CSF. Plasma levels of fatty acid ester of hydroxy fatty acid FAHFA(34:0) and ether-linked phosphatidylcholine PC(O-36:1) were positively associated with pathological levels of total tau in CSF. Regarding the plasma lipids most associated with progression from MCI to AD, our analysis detected phosphatidyl-ethanolamine plasmalogen PE(P-36:4), TG(59:12), TG(46:0), and TG(O-62:7). Furthermore, TG(O-62:7) was the lipid that was most strongly associated with the rate of progression. In conclusion, our results indicate that neutral and ether-linked lipids are involved in the pathophysiological processes of AD and the progression from MCI to AD dementia, suggesting the involvement of lipid-mediated antioxidant mechanisms in AD.

18.
Exp Gerontol ; 175: 112162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37004927

RESUMO

The evolutionary meaning and basic molecular mechanisms involved in the determination of longevity remain an unresolved problem. Currently, different theories are on offer in response to these biological traits and to explain the enormous range of longevities observed in the animal kingdom. These theories may be grouped into those that defend non-programmed aging (non-PA) and those that propose the existence of programmed aging (PA). In the present article we examine many observational and experimental data from both the field and from the laboratory and sound reasoning accumulated in recent decades both compatible and not with PA and non-PA evolutionary theories of aging. These analyses are briefly summarized and discussed. Our conclusion is that most of the data favour programmed aging with a possible contribution of non-PA antagonist pleiotropy in various cases.


Assuntos
Envelhecimento , Evolução Biológica , Animais , Envelhecimento/fisiologia , Longevidade/fisiologia , Fenótipo
19.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166716, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37044239

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease leading to selective and progressive motor neuron (MN) death. Despite significant heterogeneity in pathogenic and clinical terms, MN demise ultimately unifies patients. Across the many disturbances in neuronal biology present in the disease and its models, two common trends are loss of calcium homeostasis and dysregulations in lipid metabolism. Since both mitochondria and endoplasmic reticulum (ER) are essential in these functions, their intertwin through the so-called mitochondrial-associated membranes (MAMs) should be relevant in this disease. In this review, we present a short overview of MAMs functional aspects and how its dysfunction could explain a substantial part of the cellular disarrangements in ALS's natural history. MAMs are hubs for lipid synthesis, integrating glycerophospholipids, sphingolipids, and cholesteryl ester metabolism. These lipids are essential for membrane biology, so there should be a close coupling to cellular energy demands, a role that MAMs may partially fulfill. Not surprisingly, MAMs are also host part of calcium signaling to mitochondria, so their impairment could lead to mitochondrial dysfunction, affecting oxidative phosphorylation and enhancing the vulnerability of MNs. We present data supporting that MAMs' maladaptation could be essential to MNs' vulnerability in ALS.


Assuntos
Esclerose Amiotrófica Lateral , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Doenças Neurodegenerativas/patologia , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo
20.
Aging Cell ; 22(6): e13821, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951231

RESUMO

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Assuntos
Aminoácidos Aromáticos , Metaboloma , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Aminoácidos Aromáticos/metabolismo , Envelhecimento/metabolismo , Metabolômica/métodos , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...